MonteCoffee: A programmable kinetic Monte Carlo framework (2024)

Skip Nav Destination

Article navigation

Volume 149, Issue 11

21 September 2018

  • Previous Article
  • Next Article

Research Article| September 18 2018

Special Collection: Chemical Physics Software Collection

Mikkel Jørgensen

;

Mikkel Jørgensen a)

Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology

, 412 96 Göteborg,

Sweden

Search for other works by this author on:

This Site

Henrik Grönbeck

Henrik Grönbeck b)

Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology

, 412 96 Göteborg,

Sweden

Search for other works by this author on:

This Site

Author & Article Information

a)

Electronic mail: mikjorge@chalmers.se

b)

Electronic mail: ghj@chalmers.se

J. Chem. Phys. 149, 114101 (2018)

Article history

Received:

June 29 2018

Accepted:

August 31 2018

  • Views Icon Views
    • Article contents
    • Figures & tables
    • Video
    • Audio
    • Supplementary Data
    • Peer Review
  • Tools Icon Tools
  • Search Site

Citation

Mikkel Jørgensen, Henrik Grönbeck; MonteCoffee: A programmable kinetic Monte Carlo framework. J. Chem. Phys. 21 September 2018; 149 (11): 114101. https://doi.org/10.1063/1.5046635

Download citation file:

  • Ris (Zotero)
  • Reference Manager
  • EasyBib
  • Bookends
  • Mendeley
  • Papers
  • EndNote
  • RefWorks
  • BibTex
toolbar search

Search Dropdown Menu

Advanced Search |Citation Search

Kinetic Monte Carlo (kMC) is an essential tool in heterogeneous catalysis enabling the understanding of dominant reaction mechanisms and kinetic bottlenecks. Here we present MonteCoffee, which is a general-purpose object-oriented and programmable kMC application written in python. We outline the implementation and provide examples on how to perform simulations of reactions on surfaces and nanoparticles and how to simulate sorption isotherms in zeolites. By permitting flexible and fast code development, MonteCoffee is a valuable alternative to previous kMC implementations.

Topics

Zeolites, Programming languages, Monte Carlo methods, Nanoparticle, Chemical elements, Adsorption, Reaction mechanisms, Reaction rate constants, Surface and interface chemistry, Catalysts and Catalysis

REFERENCES

1.

J. K.

Nørskov

,

T.

Bligaard

,

J.

Rossmeisl

, and

C. H.

Christensen

,

Nat. Chem.

1

,

37

(

2009

).

2.

M. J.

Hoffmann

,

M.

Scheffler

, and

K.

Reuter

,

ACS Catal.

5

,

1199

(

2015

).

3.

M.

Stamatakis

and

D. G.

Vlachos

,

ACS Catal.

2

,

2648

(

2012

).

4.

D. T.

Gillespie

,

J. Comput. Phys.

22

,

403

(

1976

).

5.

K. A.

Fichthorn

and

W. H.

Weinberg

,

J. Chem. Phys.

95

,

1090

(

1991

).

6.

M. J.

Hoffmann

,

S.

Matera

, and

K.

Reuter

,

Comput. Phys. Commun.

185

,

2138

(

2014

).

7.

J. J.

Lukkien

, “

Carlos

,” accessed online 24 January 2018, https://carlos.win.tue.nl/.

9.

M.

Leetmaa

and

N. V.

Skorodumova

,

Comput. Phys. Commun.

185

,

2340

(

2014

).

10.

M.

Leetmaa

and

N. V.

Skorodumova

,

Comput. Phys. Commun.

196

,

611

(

2015

).

11.

F. M.

Kunz

,

L.

Kuhn

, and

O.

Deutschmann

,

J. Chem. Phys.

143

,

044108

(

2015

).

12.

M.

Stamatakis

and

D. G.

Vlachos

,

J. Chem. Phys.

134

,

214115

(

2011

).

13.

P. F.

Dubois

,

Comput. Phys.

8

,

70

(

1994

).

14.

S. R.

Bahn

and

K. W.

Jacobsen

,

Comput. Sci. Eng.

4

,

56

(

2002

).

15.

A. P. J.

Jansen

,

An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions

(

Springer

,

Berlin

,

2012

), pp.

11

12

;

38

;

53

;

162

163

.

16.

A.

Chatterjee

and

A. F.

Voter

,

J. Chem. Phys.

132

,

194101

(

2010

).

17.

M.

Stamatakis

and

D. G.

Vlachos

,

Comput. Chem. Eng.

35

,

2602

(

2011

).

18.

E. C.

Dybeck

,

C. P.

Plaisance

, and

M.

Neurock

,

J. Chem. Theory Comput.

13

,

1525

(

2017

).

19.

See https://docs.python.org/2/tutorial/classes.html for a description of object oriented programming in python; accessed online 15 May 2018.

20.

M.

Jørgensen

and

H.

Grönbeck

,

ACS Catal.

7

,

5054

(

2017

).

21.

M.

Jørgensen

and

H.

Grönbeck

,

Angew. Chem., Int. Ed.

57

,

5086

(

2018

).

22.

T.

Nilsson Pingel

,

M.

Jørgensen

,

A.

Yankovich

,

H.

Grönbeck

, and

E.

Olsson

,

Nat. Commun.

9

,

2722

(

2018

).

23.

P.

Hohenberg

and

W.

Kohn

,

Phys. Rev.

136

,

B864

(

1964

).

24.

W.

Kohn

and

L. J.

Sham

,

Phys. Rev.

140

,

A1133

(

1965

).

25.

See https://wiki.fysik.dtu.dk/ase/ase/atoms.html for a description of the ase atoms object; accessed online 15 June 2018.

26.

F.

Calle-Vallejo

,

J. I.

Martínez

,

J. M.

García-Lastra

,

P.

Sautet

, and

D.

Loffreda

,

Angew. Chem., Int. Ed.

53

,

8316

(

2014

).

27.

F.

Calle-Vallejo

,

D.

Loffreda

,

M. T. M.

Koper

, and

P.

Sautet

,

Nat. Chem.

7

,

403

(

2015

).

28.

B.

Puchala

,

M. L.

Falk

, and

K.

Garikipati

,

J. Chem. Phys.

132

,

134104

(

2010

).

29.

K. A.

Fichthorn

and

Y.

Lin

,

J. Chem. Phys.

138

,

164104

(

2013

).

30.

H.

Eyring

,

Chem. Rev.

17

,

65

(

1935

).

31.

C.

Paolucci

,

A. A.

Parekh

,

I.

Khurana

,

J. R. D.

Iorio

,

H.

Li

,

J. D.

Albarracin Caballero

,

A. J.

Shih

,

T.

Anggara

,

W. N.

Delgass

,

J. T.

Miller

,

F. H.

Ribeiro

,

R.

Gounder

, and

W. F.

Schneider

,

J. Am. Chem. Soc.

138

,

6028

(

2016

).

32.

D.

Cai

,

Y.

Ma

,

Y.

Hou

,

Y.

Cui

,

Z.

Jia

, and

C.

Zhang

,

Catal. Sci. Technol.

7

,

2440

(

2017

).

33.

G.

Kresse

and

J.

Furthmuller

,

Phys. Rev. B

54

,

11169

(

1996

).

34.

G.

Kresse

and

J.

Furthmuller

,

Comput. Mater. Sci.

6

,

15

(

1996

).

35.

G.

Kresse

and

J.

Hafner

,

Phys. Rev. B

47

,

558

(

1993

).

36.

G.

Henkelman

,

B. P.

Uberuaga

, and

H.

Jónsson

,

J. Chem. Phys.

113

,

9901

(

2000

).

37.

See http://theory.cm.utexas.edu for “Henkelman Group at the University of Texas at Austin Home Page” (accessed November 16, 2015).

38.

S.

Smidstrup

,

A.

Pedersen

,

K.

Stokbro

, and

H.

Jónsson

,

J. Chem. Phys.

140

,

214106

(

2014

).

39.

B.

Hammer

,

L. B.

Hansen

, and

J. K.

Nørskov

,

Phys. Rev. B

59

,

7413

(

1999

).

40.

J.

Wellendorff

,

K. T.

Lundgaard

,

A.

Møgelhøj

,

V.

Petzold

,

D. D.

Landis

,

J. K.

Nørskov

,

T.

Bligaard

, and

K. W.

Jacobsen

,

Phys. Rev. B

85

,

235149

(

2012

).

© 2018 Author(s).

2018

Author(s)

You do not currently have access to this content.

Sign in

Don't already have an account? Register

Sign In

You could not be signed in. Please check your credentials and make sure you have an active account and try again.

Reset password

Register

Sign in via your Institution

Sign in via your Institution

Pay-Per-View Access

$40.00

Buy This Article

2,275 Views

25 Web of Science

25 Crossref

View Metrics

×

Citing articles via

Google Scholar

CrossRef (25)

Sign up for alerts

MonteCoffee: A programmable kinetic Monte Carlo framework (7)

  • Most Read
  • Most Cited

The structure of water: A historical perspective

Freezing point depression of salt aqueous solutions using the Madrid-2019 model

Phase diagrams—Why they matter and how to predict them

MonteCoffee: A programmable kinetic Monte Carlo framework (2024)
Top Articles
Latest Posts
Article information

Author: Dong Thiel

Last Updated:

Views: 5956

Rating: 4.9 / 5 (79 voted)

Reviews: 86% of readers found this page helpful

Author information

Name: Dong Thiel

Birthday: 2001-07-14

Address: 2865 Kasha Unions, West Corrinne, AK 05708-1071

Phone: +3512198379449

Job: Design Planner

Hobby: Graffiti, Foreign language learning, Gambling, Metalworking, Rowing, Sculling, Sewing

Introduction: My name is Dong Thiel, I am a brainy, happy, tasty, lively, splendid, talented, cooperative person who loves writing and wants to share my knowledge and understanding with you.